Abstract
AbstractIn the three‐dimensional (3D) transversely symmetric oscillator, there are plentiful degeneracies and gaps in the quantum energy spectrum as a function of the ratio of the transverse to longitudinal frequency. It is theoretically verified that while the SU(2) interaction destroys the original degeneracies, numerous new degeneracies and gaps emerge around the original degeneracies to form a similar fine energy spectrum. The classical trajectories at the emergent degeneracies are analyzed to be localized on the 3D parametric surfaces which are constituted by the topologically invariant curves in the transverse tomography. The quantum coherent states are exploited to develop the wave functions that correspond to the 3D geometric surfaces in classical dynamics. Furthermore, the wave structures of the stationary coherent states at small quantum numbers are explored and found to display peculiar patterns with symmetries related to classical trajectories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.