Abstract

We consider solitons in a system of linearly coupled Korteweg-de Vries (KdV) equations, which model two-layer settings in various physical media. We demonstrate that traveling symmetric solitons with identical components are stable at velocities lower than a certain threshold value. Above the threshold, which is found exactly, the symmetric modes are unstable against spontaneous symmetry breaking, which gives rise to stable asymmetric solitons. The shape of the asymmetric solitons is found by means of a variational approximation and in the numerical form. Simulations of the evolution of an unstable symmetric soliton sometimes produce its breakup into two different asymmetric modes. Collisions between moving stable solitons, symmetric and asymmetric ones, are studied numerically, featuring noteworthy features. In particular, collisions between asymmetric solitons with identical polarities are always elastic, while in the case of opposite polarities the collision leads to a switch of the polarities of both solitons. Three-soliton collisions are studied too, featuring quite complex interaction scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.