Abstract
We consider light transmission in a two-dimensional (2D) photonic crystal waveguide coupled with two identical nonlinear defects positioned symmetrically aside the waveguide. With the coupled mode theory, we show three scenarios for the transmission. The first one inherits the linear case and preserves the symmetry. In the second scenario, the symmetry is broken because of different light intensities at the defects. In the third scenario, the intensities at the defects are equal but phases of complex amplitudes are different. That results in a vortical power flow between the defects similar to the dc Josephson effect if the input power over the waveguide is applied and the defects are coupled. All of these phenomena agree well with computations based on an expansion of the electromagnetic field into optimally adapted photonic Wannier functions in a 2D photonic crystal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.