Abstract
The decoration of graphene samples with adatoms or nanoparticles leads to the enhancement of spin-orbit interactions as well as to the introduction of symmetry-breaking effects that could have drastic effects on spin and electronic transport phenomena. We present an analysis based on symmetry considerations and examine the impact on the scattering matrix for graphene systems containing defects that enhance spin-orbit interactions, while conserving the electronic total angular momentum. We show that the appearance and dominance of skew scattering, and the related observation of valley and/or spin Hall effect in decorated graphene samples, suggests the set of symmetries that adatom perturbations should satisfy. We further show that detailed measurements of the transport and elastic times as a function of carrier concentration make it possible to not only extract the strength of the spin-orbit interaction, as suggested before, but also obtain the amplitude of the symmetry-breaking terms introduced. To examine how different terms would affect measurements, we also present calculations for typical random distributions of impurities with different perturbations, illustrating the detailed energy dependence of different observables
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.