Abstract

We consider a quantum many-body system on a lattice which exhibits a spontaneous symmetry breaking in its infinite-volume ground states, but in which the corresponding order operator does not commute with the Hamiltonian. Typical examples are the Heisenberg antiferromagnet with a Néel order and the Hubbard model with a (superconducting) off-diagonal long-range order. In the corresponding finite system, the symmetry breaking is usually “obscured” by “quantum fluctuation” and one gets a symmetric ground state with a long-range order. In such a situation, Horsch and von der Linden proved that the finite system has a low-lying eigenstate whose excitation energy is not more than of orderN −1, whereN denotes the number of sites in the lattice. Here we study the situation where the broken symmetry is a continuous one. For a particular set of states (which are orthogonal to the ground state and with each other), we prove bounds for their energy expectation values. The bounds establish that there exist ever-increasing numbers of low-lying eigenstates whose excitation energies are bounded by a constant timesN −1. A crucial feature of the particular low-lying states we consider is that they can be regarded as finite-volume counterparts of the infinite-volume ground states. By forming linear combinations of these low-lying states and the (finite-volume) ground state and by taking infinite-volume limits, we construct infinite-volume ground states with explicit symmetry breaking. We conjecture that these infinite-volume ground states are ergodic, i.e., physically natural. Our general theorems not only shed light on the nature of symmetry breaking in quantum many-body systems, but also provide indispensable information for numerical approaches to these systems. We also discuss applications of our general results to a variety of interesting examples. The present paper is intended to be accessible to readers without background in mathematical approaches to quantum many-body systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call