Abstract

Vertebrates display asymmetric arrangements of inner organs such as heart and stomach. The Nodal signaling cascade in the left lateral plate mesoderm in all cases directs asymmetric morphogenesis and placement during organogenesis. Mechanisms that lead up to left-asymmetric Nodal induction seem to differ between the vertebrates. Cilia produce a leftward extracellular fluid flow in zebrafish, medaka, mouse, rabbit, and Xenopus embryos during neurulation. In Xenopus, earlier asymmetric cues were described. Some, such as Rab11, apparently act in the zygote. Others were efficiently manipulated in ventral-right cells at the four-cell stage, a lineage presumably independent of the ciliated gastrocoel roof plate (GRP) during neurulation. Here, we show that one- and four-cell manipulations of Rab11 showed equal low efficiencies of left-right disturbances. We also reevaluated the lineage of the GRP. By tracing back future ciliated cells from the gastrula to the four-cell stage, we show that ventral cells contribute to ciliated sensory cells at the border of the GRP. Knockdown of the Nodal inhibitor Coco in the ventral right lineage resulted in embryos with ectopic right-sided Nodal and Pitx2c expression. Together, these experiments support a cilia-based mechanism of symmetry breakage in the frog Xenopus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.