Abstract

The development of small molecule inhibitors of PD-1/PD-L1 is eagerly anticipated for treatment of cancer. We focused on the symmetry of the ternary complex structure of reported small molecule ligands and hPD-L1 homodimers, and designed partially- or fully-symmetric compounds for more potent inhibitors. The design of the new compounds was guided by our hypothesis that the designed symmetric compound would induce a flip of sidechain of ATyr56 protein residue to form a new cavity. The designed compound 4 exhibited substantially increased binding affinity to hPD-L1, as well as PD-1/PD-L1 inhibitory activity in physiological conditions. Compound 4 also showed a dose-dependent increase in IFN-γ secretion levels in a mixed lymphocyte reaction assay. These results not only indicate the feasibility of targeting the PD-1/PD-L1 pathway with small molecules, but illustrate the applicability of the symmetry-based ligand design as an attractive methodology for targeting protein-protein interaction stabilizers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.