Abstract

We study the space-time correlation and response functions in nonequilibrium growth processes described by linear stochastic Langevin equations. Exploiting exclusively the existence of space- and time-dependent symmetries of the noiseless part of these equations, we derive expressions for the universal scaling functions of two-time quantities which are found to agree with the exact expressions obtained from the stochastic equations of motion. The usefulness of the space-time functions is illustrated through the investigation of two atomistic growth models, the Family model and the restricted Family model, which are shown to belong to a unique universality class in 1+1 and 2+1 space dimensions. This corrects earlier studies which claimed that in 2+1 dimensions the two models belong to different universality classes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.