Abstract

The symmetry adapted counting rule for mechanisms and states of self-stress in symmetric frameworks is presented in an accessible and intuitive manner with the aim of empowering engineers who design such structures. By simply counting nodes and bars, it is possible to detect states of self-stress and mechanisms beyond the standard Maxwell-Calladine count. This methodology is first introduced without the need to understand the underlying group theory before being applied to a range of example frameworks. Design problems focusing on gridshells are discussed – it is noted that placing bars on lines of mirror symmetry tend to increase the number of states of self-stress in a framework, which can be desirable. This paper reformulates common symmetric frameworks and introduces simple rules regarding how to obtain a greater number of states of self-stress. By allowing for the design of states of self-stress, the forces in the structure can be designed with greater control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.