Abstract
A generalized trial wave function termed as the "multi-D1 Ansatz" has been developed to study the ground state of the spin-boson model with simultaneous diagonal and off-diagonal coupling in the sub-Ohmic regime. Ground-state properties including the energy and the spin polarization are investigated, and the results are consistent with those from the exact diagonalization and density matrix renormalization group approaches for the cases involving two oscillators and two baths described by a continuous spectral density function. Breakdown of the rotational and parity symmetries along the continuous quantum phase transition separating the localized phase from the critical phase has been uncovered. Moreover, the phase boundary is determined accurately with the corresponding symmetry parameters of the rotational and parity symmetries. A critical value of the spectral exponent s* = 0.49(1) is predicted in the weak coupling limit, which is in agreement with the mean-field prediction of 1/2, but much smaller than the earlier literature estimate of 0.75(1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.