Abstract

We consider the relation of symmetries and subspace controllability for spin networks with XXZ coupling subject to control of a single node by a local potential (Z-control). Such networks decompose into excitation subspaces. Focusing on the single excitation subspace it is shown that for single-node Z-controls external symmetries are characterized by eigenstates of the system Hamiltonian that have zero overlap with the control node, and there are no internal symmetries. It is further shown that there are symmetries that persist even in the presence of random perturbations. For uniformly coupled XXZ chains a characterization of all possible symmetries is given, which shows a strong dependence on the position of the node we control. Finally, it is shown rigorously for uniform Heisenberg and XX chains subject to single-node Z-control that the lack of symmetry is not only necessary but sufficient for subspace controllability. The latter approach is then generalized to establish controllability results for simple branched networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call