Abstract

The full study of perovskite type nanotubes with square morphology is given for the first time. The line symmetry group L = ZP (a product of one axial point group P and one infinite cyclic group Z of generalized translations) of single-walled (SW) and double-walled (DW) SrTiO3 nanotubes (NT) is considered. The nanotube is defined by the square lattice translation vector L = l1a + l2b and chiral vector R = n1a + n2b, (l1, l2, n1 and n2 are integers). The nanotube of the chirality (n1,n2) is obtained by folding the (001) slabs of two- layers (with the layer group P4mm) and of three layers (with the layer group P4/mmm) in a way that the chiral vector R becomes circumference of the nanotube. Due to the orthogonality relation (RL) = 0, l1/l2 = −n2/n1 i.e. SW nanotubes with square morphology are commensurate for any rolling vector R(n1,n2). For SW (n,0) NTs the line symmetry groups belong to family 11 (T^Dnh) and are n/mmm or for even and odd n, respectively. For SW (n,n) NTs the line symmetry groups (2n)n/mcm belong to family 13 (T2n1 Dnh).The line symmetry group of a double-wall nanotube is found as intersection L2 = Z2P2 = (L ∩ L′) of the symmetry groups L and L′ of its single-wall constituents as earlier considered for DW CNTs. The symmetry group of DWNT (n,0)@M(n,0) belongs to the same family 11 (T^Dnh) as its SW constituents. The symmetry group of DWNT (n,n)@M(n,n) depends on the parity of M. For DW NTs with odd M, the line symmetry groups are the same as for their SW constituents and belong to family 13 (T2n1 Dnh). For even M, the rotations about screw axis of order 2n are changed by rotations around pure rotation axis of order n so that DW NT line symmetry groups belong to family 11 (T^Dnh). Commensurate STO DWNTs (n1,0)@(n2,0) and (n1, n1)@(n2, n2) belong to family 11 (T^Dnh) with n equal to the greatest common divisor of n1 and n2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call