Abstract

The binding energy of a double-wall carbon nanotube (DWNT) is theoretically studied as a function of the relative longitudinal shift and relative rotation of the component single-wall carbon nanotubes (SWNTs). It is shown that the binding energy is an oscillating function of the relative shift and rotation, with the oscillation period depending on the relations between symmetry elements of the SWNTs. The results of numerical calculations of the binding energy of DWNTs, performed in the approximation of weak van der Waals interlayer interaction, are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.