Abstract
In the light of SU(3) flavor symmetry, the effective interaction Hamiltonian in tensor form is obtained by virtue of group representation theory. The strong and electromagnetic breaking effects are treated as a spurion octet so that the flavor singlet principle can be utilized as the criterion to determine the form of effective Hamiltonian. Two body decays of both baryonic and mesonic final states are parameterized in the uniform scheme, based on which the relative phase between the strong and electromagnetic amplitudes is studied for various charmonium decay modes, including psi' and/or J/jpsi decay to octet baryon pair, decuplet baryon pair, decuplet-octet baryon final state, and pseudoscalar-pseudoscalar meson final state. In data analysis of samples taken in $e^+e^-$ collider, the details of experimental effects, such as energy spread and initial state radiative correction are taken into consideration in order to make full use of experimental information and acquire the accurate and delicate results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.