Abstract

A detailed symmetry analysis is performed for a microscopic model used to describe traffic flow in two-lane motorways. The traffic flow theory employed in this model is a two-dimensional extension of the Aw-Rascle theory. The flow parameters, including vehicle density, and vertical and horizontal velocities, are described by a system of first-order partial differential equations belonging to the family of hydrodynamic systems. This fluid-dynamics model is expressed in terms of the Euler and Lagrange variables. The admitted Lie point symmetries and the one-dimensional optimal system are determined for both sets of variables. It is found that the admitted symmetries for the two sets of variables form different Lie algebras, leading to distinct one-dimensional optimal systems. Finally, the Lie symmetries are utilized to derive new similarity closed-form solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call