Abstract
In this paper, we study a weakly dissipative Dullin–Gottwald–Holm equation from the viewpoint of Lie symmetry analysis. We first perform symmetry analysis and the nonlinear self-adjointness of this equation. Due to a mixed derivatives term in the equation, we need to rewrite the corresponding form Lagrangian in symmetric form to construct conservation laws. From the viewpoint, we present a general procedure of how these conserved quantities come about. Based on these conserved quantities, blow-up analysis and global existence of strong solutions are presented. Finally, we show that this equation admits a weak peakon-type solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.