Abstract
In the present article, the time fractional Fisher equation is considered in conformal form to study the application of the Lie classical method and quantitative analysis. The Lie symmetry method has been applied to find the infinitesimal generators and symmetry reductions of the fractional Fisher equation. The obtained reduced form of the equation is solved by the method of G ′ / G , which gives different forms of solutions. The theory of bifurcation has been utilized in the reduced form to check the stability and nature of critical points by transforming the equations into an autonomous system. Some phase portraits have been drawn at different critical points by the use of maple.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.