Abstract

Heat, momentum, and mass transport in turbulent boundary layer nanofluid flow over a flat plate were investigated. Boundary layer equations were reduced to self-similar forms and solved numerically. The Lie group technique, which is based on the symmetry properties of governing equations, was used to derive self-similar forms of these equations. Turbulent viscosity was predicted using the mixing-length model. Also, dependences of physical properties (viscosity, thermal conductivity, and diffusion coefficients) on the nanofluid concentration and temperature were accounted for. Influences of different dimensionless parameters and nanoparticle concentration on the velocity and temperature profiles, as well as on the relative Nusselt number and skin-friction coefficient, were investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.