Abstract

The exploitation of space group symmetries in numerical calculations of periodic crystalline solids accelerates calculations and provides physical insight. We present results for a space-group symmetry adaptation of electronic structure calculations within the finite-temperature self-consistent GW method along with an efficient parallelization scheme on accelerators. Our implementation employs the simultaneous diagonalization of the Dirac characters of the orbital representation. Results show that symmetry adaptation in self-consistent many-body codes results in substantial improvements of the runtime, and that block diagonalization on top of a restriction to the irreducible wedge results in additional speedup.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.