Abstract

Sextic polynomial oscillator is probably the best known quantum system which is partially exactly alias quasi-exactly solvable (QES), i.e., which possesses closed-form, elementary-function bound states ψ(x) at certain couplings and energies. In contrast, the apparently simpler and phenomenologically more important quartic polynomial oscillator is not QES. A resolution of the paradox is proposed: The one-dimensional Schrödinger equation is shown QES after the analyticity-violating symmetrization V(x)=A|x|+Bx2+C|x|3+x4 of the quartic polynomial potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.