Abstract
We establish a few properties of eigenvalues and eigenvectors of the quaternionic Ginibre ensemble (QGE), analogous to what is known in the complex Ginibre case (see [7, 11, 14]). We first recover a version of Kostlan’s theorem that was already at the heart of an argument by Rider [1], namely, that the set of the squared radii of the eigenvalues is distributed as a set of independent gamma variables. Our proof technique uses the De Bruijn identity and properties of Pfaffians; it also allows to prove that the high powers of these eigenvalues are independent. These results extend to any potential beyond the Gaussian case, as long as radial symmetry holds; this includes for instance truncations of quaternionic unitary matrices, products of quaternionic Ginibre matrices, and the quaternionic spherical ensemble. We then study the eigenvectors of quaternionic Ginibre matrices. Angles between eigenvectors and the matrix of overlaps both exhibit some specific features that can be compared to the complex case. In particular, we compute the distribution and the limit of the diagonal overlap associated to an eigenvalue that is conditioned to be at the origin. This complements a recent study of overlaps in quaternionic ensembles by Akemann, Förster and Kieburg [1, 2].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.