Abstract
The temperature of the chiral restoration phase transition at 130 MeV as well as the temperature of the center symmetry ("deconfinement") phase transition in a pure glue theory at 300 MeV are two independent temperatures and their interplay determines a structure of different regimes of hot QCD. Given a chiral spin symmetry of the color charge and of the chromoelectric interaction we can conclude from observed symmetries of spatial and temporal correlators of N_F=2 QCD with domain wall Dirac operator at physical quark masses that above the chiral symmetry restoration crossover around T_pc but below roughly 3T_pc there should exist an intermediate regime (the stringy fluid) of hot QCD that is characterized by approximate chiral spin symmetry and where degrees of freedom are chirally symmetric quarks bound into color singlet objects by the chromoelectric field. Above this intermediate regime the color charge and the chromoelectric field are Debye screened and one observes a transition to QGP with magnetic confinement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.