Abstract

Semiclassical systems being symmetric under Lie group are studied. A state of a semiclassical system may be viewed as a set (X, f) of a classical state X and a quantum state f in the external classical background X. Therefore, the set of all semiclassical states may be considered as a bundle (semiclassical bundle). Its base {X} is the set of all classical states, while a fiber is a Hilbert space ℱX of quantum states in the external background X. Symmetry transformation of a semiclassical system may be viewed as an automorphism of the semiclassical bundle. Automorphism groups can be investigated with the help of sections of the bundle: to any automorphism of the bundle one assigns a transformation of section of the bundle. Infinitesimal properties of transformations of sections are investigated; correspondence between Lie groups and Lie algebras is discussed. For gauge theories, some points of the semiclassical bundle are identified: a gauge group acts on the bundle. For this case, only gauge-invariant sections of the semiclassical bundle are taken into account.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.