Abstract

In this paper, we address the computation of the symmetries of polynomial (and thus also rational) planar vector fields using elements from Computer Algebra. We show that they can be recovered from the symmetries of the roots of an associated univariate complex polynomial which is constructed as a generator of a certain elimination ideal. Computing symmetries of the roots of the auxiliary polynomial is a task considerably simpler than the original problem, which can be done efficiently working with classical Computer Algebra tools. Special cases, in which the group of symmetries of the polynomial roots is infinite, are separately considered and investigated. The presented theory is complemented by illustrative examples. The main steps of the procedure for investigating the symmetries of a given polynomial vector field are summarized in a flow chart for clarity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.