Abstract
Null hypersurfaces have metrics with vanishing determinants and this degeneracy of these metrics leads to several difficulties. In this paper, null hypersurfaces of indefinite Kenmotsu space forms, tangent to the structure vector field, are studied with specific attention to locally symmetric, semi-symmetric and Ricci semi-symmetric null hypersurfaces. We show that locally symmetric and semi-symmetric null hypersurfaces are totally geodesic and parallel. These also hold for Ricci semi-symmetric null hypersurfaces, under a certain condition. We prove that, in null Einstein hypersurfaces of an indefinite Kenmotsu space form, tangent to the structure vector field, the local symmetry, semisymmetry and Ricci semi-symmetry notions are equivalent. For totally contact umbilical null hypersurfaces, we show that there are η-“Weyl” connections adapted to the induced structure on the null hypersurface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.