Abstract
Sharp large deviation estimates for stochastic differential equations with small noise, based on minimizing the Freidlin–Wentzell action functional under appropriate boundary conditions, can be obtained by integrating certain matrix Riccati differential equations along the large deviation minimizers or instantons, either forward or backward in time. Previous works in this direction often rely on the existence of isolated minimizers with positive definite second variation. By adopting techniques from field theory and explicitly evaluating the large deviation prefactors as functional determinant ratios using Forman’s theorem, we extend the approach to general systems where degenerate submanifolds of minimizers exist. The key technique for this is a boundary-type regularization of the second variation operator. This extension is particularly relevant if the system possesses continuous symmetries that are broken by the instantons. We find that removing the vanishing eigenvalues associated with the zero modes is possible within the Riccati formulation and amounts to modifying the initial or final conditions and evaluation of the Riccati matrices. We apply our results in multiple examples including a dynamical phase transition for the average surface height in short-time large deviations of the one-dimensional Kardar–Parisi–Zhang equation with flat initial profile.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.