Abstract

The fermionic fields constructed from Elko have several unexpected properties. They satisfy the Klein–Gordon but not the Dirac equation and are of mass dimension one instead of three-half. Starting with the Klein–Gordon Lagrangian, we initiate a careful study of the symmetries and interactions of these fermions and their higher-spin generalizations. We find, although the fermions are of mass dimension one, the four-point fermionic self-interaction violates unitarity at high-energy so it cannot be a fundamental interaction of the theory. Using the optical theorem, we derive an explicit bound on energy for the fermion–scalar interaction. It follows that for the spin-half fermions, the demand of renormalizability and unitarity forbids four-point interactions and only allows for the Yukawa interaction. For fermions with spin [Formula: see text], they have no renormalizable or unitary interactions. Since the theory is described by a Klein–Gordon Lagrangian, the interaction generated by the local [Formula: see text] gauge symmetry which contains a four-point interaction, is excluded by the demand of renormalizability. In the context of the Standard Model, these properties make the spin-half fermions natural dark matter candidates. Finally, we discuss the recent developments on the introduction of new adjoint and spinor duals which may allow us to circumvent the unitarity constraints on the interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call