Abstract

Strategic games may exhibit symmetries in a variety of ways. A common aspect, enabling the compact representation of games even when the number of players is unbounded, is that players cannot (or need not) distinguish between the other players. We define four classes of symmetric games by considering two additional properties: identical payoff functions for all players and the ability to distinguish oneself from the other players. Based on these varying notions of symmetry, we investigate the computational complexity of pure Nash equilibria. It turns out that in all four classes of games Nash equilibria can be computed in TC0 when only a constant number of actions is available to each player, a problem that has been shown intractable for other succinct representations of multi-player games. We further show that identical payoff functions make the difference between TC0-completeness and membership in AC0, while a growing number of actions renders the equilibrium problem NP-complete for three of the classes and PLS-complete for the most restricted class for which the existence of a pure Nash equilibrium is guaranteed. Finally, our results extend to wider classes of threshold symmetric games where players are unable to determine the exact number of players playing a certain action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.