Abstract

We present novel, deterministic, efficient algorithms to compute the symmetries of a planar algebraic curve, implicitly defined, and to check whether or not two given implicit planar algebraic curves are similar, i.e. equal up to a similarity transformation. Both algorithms are based on the fact, well-known in Harmonic Analysis, that the Laplacian commutes with orthogonal transformations, and on efficient algorithms to find the symmetries ∕ similarities of a harmonic algebraic curve ∕ two given harmonic algebraic curves. In fact, we show that, except for some special cases, the problem can be reduced to the harmonic case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.