Abstract

Large time asymptotics of compressible Euler equations for a polytropic gas with and without the porous media equation are constructed in which the Barenblatt solution is embedded. Invariance analysis for these governing equations are carried out using the classical and the direct methods. A new second order nonlinear partial differential equation is derived and is shown to reduce to an Euler-Painleve equation. A regular perturbation solution of a reduced ordinary differential equation is determined. And an exact closed form solution of a system of ordinary differential equations is derived using the invariance analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.