Abstract

The partition function of a quantum field theory with an exact symmetry can be decomposed into a sum of functional integrals each giving the contribution from states with definite symmetry properties. The composition rules of the corresponding transfer matrix elements can be exploited to devise a multi-level Monte Carlo integration scheme for computing correlation functions whose numerical cost, at a fixed precision and at asymptotically large times, increases power-like with the time extent of the lattice. As a result the numerical effort is exponentially reduced with respect to the standard Monte Carlo procedure. We test this strategy in the SU(3) Yang–Mills theory by evaluating the relative contribution to the partition function of the parity odd states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.