Abstract

A fifth-order KdV equation with time-dependent coefficients and linear damping has been studied. Symmetry groups have several different applications in the context of nonlinear differential equations; for instance, they can be used to determine conservation laws. We obtain the symmetries of the model applying Lie’s classical method. The choice of some arbitrary functions of the equation by the equivalence transformation enhances the study of Lie symmetries of the equation. We have determined the subclasses of the equation which are nonlinearly self-adjoint. This allow us to obtain conservation laws by using a theorem proved by Ibragimov which is based on the concept of adjoint equation for nonlinear differential equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.