Abstract
PurposeThe purpose of this paper is to develop two types of simple jerk circuits and to carry out their dynamical analyses using a unified mathematical model.Design/methodology/approachTwo types of simple jerk circuits only involve a nonlinear resistive feedback channel composited by a nonlinear device and an inverter. The nonlinear device is implemented through parallelly connecting two diode-switch-based series branches. According to the classifications of switch states and circuit types, a unified mathematical model is established for these two types of simple jerk circuits, and the origin symmetry and scale proportionality along with the origin equilibrium stability are thereby discussed. The coexisting bifurcation behaviors in the two types of simple jerk systems are revealed by bifurcation plots, and the origin symmetry and scale proportionality are effectively demonstrated by phase plots and attraction basins. Moreover, hardware experimental measurements are performed, from which the captured results well validate the numerical simulations.FindingsTwo types of simple jerk circuits are unified through parallelly connecting two diode-switch-based series branches and a unified mathematical model with six kinds of nonlinearities is established. Especially, the origin symmetry and scale proportionality for the two types of simple jerk systems are discussed quantitatively. These jerk circuits are all simple and inexpensive, easy to be physically implemented, which are helpful to explore chaos-based engineering applications.Originality/valueUnlike previous works, the significant values are that through unifying these two types of simple jerk systems, a unified mathematical model with six kinds of nonlinearities is established, upon which symmetrically scaled coexisting behaviors are numerically disclosed and experimentally demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.