Abstract

Fractional calculus, which deals with the concept of fractional derivatives and integrals, has become an important area of research, due to its ability to capture memory effects and non-local behavior in the modeling of real-world phenomena. In this work, we study a new class of fractional Volterra–Fredholm integro-differential equations, involving the Caputo–Katugampola fractional derivative. By applying the Krasnoselskii and Banach fixed-point theorems, we prove the existence and uniqueness of solutions to this problem. The modified Adomian decomposition method is used, to solve the resulting fractional differential equations. This technique rapidly provides convergent successive approximations of the exact solution to the given problem; therefore, we investigate the convergence of approximate solutions, using the modified Adomian decomposition method. Finally, we provide an example, to demonstrate our results. Our findings contribute to the current understanding of fractional integro-differential equations and their solutions, and have the potential to inform future research in this area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.