Abstract
Widely accepted relationships between gaits (footfall patterns) and center of mass mechanics have been formulated from observations for cursorial mammals. However, sparse data on smaller or more generalized forms suggest a fundamentally different relationship. This study explores locomotor dynamics in one eutherian and five metatherian (marsupials) mammals—all small-bodied (<2kg) with generalized body plans that utilize symmetrical gaits. Across our sample, trials conforming to vaulting mechanics occurred least frequently (<10% of all trials) while bouncing mechanics was obtained most commonly (60%); the remaining trials represented mixed mechanics. Contrary to the common situation in large mammals, there was no evidence for discrete gait switching within symmetrical gaits as speed increased. This was in part due to the common practice of grounded running. The adaptive advantage of different patterns of center-of-mass motion and their putative energy savings remain questionable in small-bodied mammals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.