Abstract

Single hyperspectral image (HSI) super-resolution (SR) methods using a auxiliary high-resolution (HR) RGB image have achieved great progress recently. However, most existing methods aggregate the information of RGB image and HSI early during input or shallow feature extraction, whose difference between two images has not been treated and discussed. Although a few methods combine both the image features in the middle layer of the network, they fail to make full use of the two inherent properties, i.e., rich spectra of HSI and HR content of RGB image, to guide model representation learning. To address these issues, in this article, we propose a dual-stage learning approach for HSI SR to learn a general spatial–spectral prior and image-specific details, respectively. In the coarse stage, we fully take advantage of two adjacent bands and RGB image to build the model. During coarse SR, a symmetrical feature propagation approach is developed to learn the inherent content of each image over a relatively long range. The symmetrical structure encourages the two streams to better retain their particularity. Meanwhile, it can realize the information interaction by the adaptive local block aggregation (ALBA) module. To learn image-specific details, a back-projection refinement network is embedded in the structure, which further improves the performance in fine stage. The experiments on four benchmark datasets demonstrate that the proposed approach presents excellent performance over the existing methods. Our code is publicly available at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/qianngli/SFPN</uri> .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call