Abstract

We study spin models as introduced in [20]. Such a spin model can be defined as a square matrix satisfying certain equations, and can be used to compute an associated link invariant. The link invariant associated with a symmetric spin model depends only trivially on link orientation. This property also holds for quasi-symmetric spin models, which are obtained from symmetric spin models by certain “gauge transformations” preserving the associated link invariant. Using a recent result of [16] which asserts that every spin model belongs to some Bose-Mesner algebra with duality, we show that the transposition of a spin model can be realized by a permutation of rows. We call the order of this permutation the index of the spin model. We show that spin models of odd index are quasi-symmetric. Next, we give a general form for spin models of index 2 which implies that they are associated with a certain class of symmetric spin models. The symmetric Hadamard spin models of [21] belong to this class and this leads to the introduction of non-symmetric Hadamard spin models. These spin models give the first known example where the associated link invariant depends non-trivially on link orientation. We show that a non-symmetric Hadamard spin model belongs to a certain triply regular Bose-Mesner algebra of dimension 5 with duality, and we use this to give an explicit formula for the associated link invariant involving the Jones polynomial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call