Abstract

The chemical bonding aspects of the transition state (TST) of methane activation on a Rh{111} surface are analyzed. Three methods are compared: The barrier decomposition analysis of Hu et al. in which the bond between CH is assumed completely broken in the TST (Satterfield, Heterogeneous catalysis in industrial practice, 2nd ed., 1996; Chorkendorff and Niemantsverdriet, Concepts of modern catalysis and kinetics, 2003; Somorjai, Introduction to surface chemistry and catalysis, 1994); the activation strain model of Bickelhaupt in which the CH bond is assumed to be equal to the gasphase CH interaction energy (Christmann, Surface science reports, 1988; Nørskov and Christensen, Science, 2006; Forsberg, Chemical engineering progress, 2005); and a model in which the interaction energies between CH, and of the H atom and CH3 with the catalyst are all given equal attention, the symmetric transition state analysis. This symmetric transition state analysis would not yield a result different from the traditional methods if all bonds were additive and decoupled. But, as our results show, that is not in general the case. The position of the maximum in non-additivity can be considered a descriptor for the position of the TST on the reaction coordinate. At the TST, we find that the three interactions are of comparable strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.