Abstract

We show that for any singular dominant integral weight λ of a complex semisimple Lie algebra g, the endomorphism algebra B of any projective-injective module of the parabolic BGG category Oλp is a symmetric algebra (as conjectured by Khovanov) extending the results of Mazorchuk and Stroppel for the regular dominant integral weight. Moreover, the endomorphism algebra B is equipped with a homogeneous (non-degenerate) symmetrizing form. In the appendix, there is a short proof due to K. Coulembier and V. Mazorchuk showing that the endomorphism algebra Bλp of the basic projective-injective module of Oλp is a symmetric algebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.