Abstract

The Grassmannian model represents harmonic maps from Riemann surfaces by families of shift-invariant subspaces of a Hilbert space. We impose a natural symmetry condition on the shift-invariant subspaces that corresponds to considering an important class of harmonic maps into symmetric and k-symmetric spaces. Using an appropriate description of such symmetric shift-invariant subspaces we obtain new results for the corresponding extended solutions, including how to obtain primitive harmonic maps from certain harmonic maps into the unitary group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.