Abstract

We derive useful reduction formulae which express one-loop Feynman integrals with a large number of external momenta in terms of lower-point integrals carrying easily derivable kinematic coefficients which are symmetric in the external momenta. These formulae apply for integrals with at least two more external legs than the dimension of the external momenta, and are presented in terms of two possible bases: one composed of a subset of descendant integrals with one fewer external legs, the other composed of the complete set of minimally-descendant integrals with just one more leg than the dimension of external momenta. In 3+1 dimensions, particularly compact representations of kinematic invariants can be computed, which easily lend themselves to spinor-helicity or trace representations. The reduction formulae have a close relationship with D-dimensional unitarity cuts, and thus provide a path towards computing full (all-ϵ) expressions for scattering amplitudes at arbitrary multiplicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.