Abstract
Pythagorean fuzzy sets PFSs, originally proposed by Yager, are a new tool to deal with vagueness with the square sum of the membership degree and the nonmembership degree equal to or less than 1, which have much stronger ability than Atanassov's intuitionistic fuzzy sets to model such uncertainty. In this paper, we modify the existing score function and accuracy function for Pythagorean fuzzy number to make it conform to PFSs. Associated with the given operational laws, we define some novel Pythagorean fuzzy weighted geometric/averaging operators for Pythagorean fuzzy information, which can neutrally treat the membership degree and the nonmembership degree, and investigate the relationships among these operators and those existing ones. At length, a practical example is provided to illustrate the developed operators and to make a comparative analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.