Abstract

This chapter develops the basic theory of symmetric powers of smooth varieties. The constructions in this chapter are based on an analogy with the corresponding symmetric power constructions in topology. If 𝐾 is a set (or even a topological space) then the symmetric power 𝑆𝑚𝐾 is defined to be the orbit space 𝐾𝑚/Σ‎𝑚, where Σ‎𝑚 is the symmetric group. If 𝐾 is pointed, there is an inclusion 𝑆𝑚𝐾 ⊂ 𝑆𝑚+1𝐾 and 𝑆∞𝐾 = ∪𝑆𝑚𝐾 is the free abelian monoid on 𝐾 − {*}. When 𝐾 is a connected topological space, the Dold–Thom theorem says that ̃𝐻*(𝐾, ℤ) agrees with the homotopy groups π‎ *(𝑆∞𝐾). In particular, the spaces 𝑆∞(𝑆 𝑛) have only one homotopy group (𝑛 ≥ 1) and hence are the Eilenberg–Mac Lane spaces 𝐾(ℤ, 𝑛) which classify integral homology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call