Abstract
We study symmetric motifs in random geometric graphs. Symmetric motifs are subsets of nodes which have the same adjacencies. These subgraphs are particularly prevalent in random geometric graphs and appear in the Laplacian and adjacency spectrum as sharp, distinct peaks, a feature often found in real-world networks. We look at the probabilities of their appearance and compare these across parameter space and dimension. We then use the Chen-Stein method to derive the minimum separation distance in random geometric graphs which we apply to study symmetric motifs in both the intensive and thermodynamic limits. In the thermodynamic limit the probability that the closest nodes are symmetric approaches one, whilst in the intensive limit this probability depends upon the dimension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.