Abstract

Optical sensors with a high figure of merit (FOM) for refractive index measurement can substantially enhance detection performance. For guided mode resonance (GMR) sensors, previous works mainly focused on the sensitivity enhancement rather than FOM optimization; therefore, the state-of-the-art FOM is limited within the range of 100. To address this, we propose a low-index, ultraviolet-curable resin (n = 1.344) to form a simple, stable, symmetric, GMR sensor, with enhanced sensitivity, narrowed resonant linewidth, and substantially improved FOM, in aqueous media. The influence of structural parameters was systematically investigated, and optimized FOM values as high as tens of thousands were obtained using numerical calculation. Using low-cost, nanoimprinting technology, we experimentally demonstrated a spectral linewidth as narrow as 56 pm, a bulk refractive index sensitivity of 233.35 nm / RIU, and a low detection limit 1.93 × 10-6, resulting in a FOM value up to 4200 (48 times typical GMR sensors). The proposed symmetric GMR sensor exhibits great potential in a variety of applications, including label-free biosensing, bio-imaging, and optical filters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.