Abstract

We analyze the complexity of computing pure strategy Nash equilibria (PSNE) inn symmetric games with a fixed number of actions, where the utilities are compactly represented. Such a representation is able to describe symmetric games whose number of players is exponential in the representation size. We show that in the general case, where utility functions are represented as arbitrary circuits, the problem of deciding the existence of PSNE is NP-complete. For the special case of games with two actions, there always exist a PSNE and we give a polynomial algorithm for finding one. We then focus on a natural representation of utility as piecewise-linear functions, and show that such a representation has nice computational properties. In particular, we give polynomial-time algorithms to count the number of PSNE (thus deciding if such an equilibrium exists) and to find a sample PSNE, when one exists.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.