Abstract
This paper presents a coupled finite element and boundary integral method for solving the time-periodic oscillation and scattering problem of an inhomogeneous elastic body immersed in a compressible, inviscid, homogeneous fluid. By using integral representations for the solution in the infinite exterior region occupied by the fluid, the problem is reduced to one defined only over the finite region occupied by the solid, with associated nonlocal boundary conditions. This problem is then given a family of variational formulations, including a symmetric one, which are used to derive finite-dimensional Galerkin approximations. The validity of the method is established explicitly, and results of an error analysis are discussed, showing optimal convergence to a classical solution.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.