Abstract

Extreme learning machine (ELM) can be considered as a black-box modeling approach that seeks a model representation extracted from the training data. In this paper, a modified ELM algorithm, called symmetric ELM (S-ELM), is proposed by incorporating a priori information of symmetry. S-ELM is realized by transforming the original activation function of hidden neurons into a symmetric one with respect to the input variables of the samples. In theory, S-ELM can approximate N arbitrary distinct samples with zero error. Simulation results show that, in the applications where there exists the prior knowledge of symmetry, S-ELM can obtain better generalization performance, faster learning speed, and more compact network architecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.