Abstract

Quantum key distribution uses public discussion protocols to establish shared secret keys. In the exploration of ultimate limits to such protocols, the property of symmetric extendibility of underlying bipartite states $\rho_{AB}$ plays an important role. A bipartite state $\rho_{AB}$ is symmetric extendible if there exits a tripartite state $\rho_{ABB'}$, such that the $AB$ marginal state is identical to the $AB'$ marginal state, i.e. $\rho_{AB'}=\rho_{AB}$. For a symmetric extendible state $\rho_{AB}$, the first task of the public discussion protocol is to break this symmetric extendibility. Therefore to characterize all bi-partite quantum states that possess symmetric extensions is of vital importance. We prove a simple analytical formula that a two-qubit state $\rho_{AB}$ admits a symmetric extension if and only if $\tr(\rho_B^2)\geq \tr(\rho_{AB}^2)-4\sqrt{\det{\rho_{AB}}}$. Given the intimate relationship between the symmetric extension problem and the quantum marginal problem, our result also provides the first analytical necessary and sufficient condition for the quantum marginal problem with overlapping marginals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.