Abstract
We investigate the repeated prisoner’s dilemma game where both players alternately use reinforcement learning to obtain their optimal memory-one strategies. We theoretically solve the simultaneous Bellman optimality equations of reinforcement learning. We find that the Win-stay Lose-shift strategy, the Grim strategy, and the strategy which always defects can form symmetric equilibrium of the mutual reinforcement learning process amongst all deterministic memory-one strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.